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Abstract—Software Defined Networking is a paradigm that
emerged in the networking industry recently. This technology is
not mature yet, but is gaining momentum, driven by the fact
that traditional networks began to show their limitations. Many
standardization activities are still ongoing, given the fact that
there are many aspects of a network that SDN touches upon, and
having the right tools to support these efforts is important. The
Wireless Transport Emulator (WTE) was designed for supporting
the standardization endeavors of the Wireless Transport Group,
part of the Open Networking Foundation (ONF), a consortium
that aims to promote SDN adoption through defining open
standards. WTE uses different technologies in order to simulate a
wireless transport network, consisting of emulated Network Ele-
ments, that implement a Microwave Information Model, TR-532.
It consists of a NETCONF server implementation that advertises
the TR-532 information model, and the link representations based
on Open vSwitch (OVS) bridges and a Python framework that
glues everything together. The tool is also extremely useful for
SDN application developers that want to create applications using
the aforementioned information model, because it eliminates their
need of owning real, expensive, wireless transport devices in order
to test the functionality that they are developing. It is being used
at the moment for preparing the next Wireless Transport PoC.

Index Terms—Software-Defined Netowrks, Wireless Transport,
Open Networking Foundation

I. INTRODUCTION

Computer networks have become, nowadays, complex and
increasingly challenging from the configuration and setup
point of view. Therefore, the need for key architectural changes
to the paradigm of networking has risen. Software-Defined
Networking (SDN) emerged around the year 2009, from the
work that was done in Stanford University in the context of the
OpenFlow project. It is a revolutionary approach in network-
ing, which focuses on mitigating the limitations proven by
traditional networks. The concepts proposed by this paradigm
are not new, some being even 25 years old, but the timing was
not right at the time, thus their adoption in the industry was
not possible then.

SDN proposes a novel network architecture, where the for-
warding state of the data plane is managed by a distant control
plane, decoupled from the data plane [1]. In this way, network
devices become simple packet forwarding devices, while the
control logic or the control plane is implemented in what
is called the controller. This has numerous advantages, from
being able to much more easily introduce new policies in the

network through software, to being able to centrally configure
all network devices instead of configuring individually each
one. This way SDN can provide enhanced mechanisms for
network management and configuration.

SDN can be used for optimizing the radio (e.g. remote radio
units - RRUs and baseband units - BBUs) and transport (e.g.
optical cross connects, microwave links) resources in future
5G systems. These resources can be managed by centralized
controllers, on top of which an orchestrator may be placed.
Therefore the SDN orchestrator has to be exposed to an
adequately detailed abstraction of these resources.

Wireless Transport Group is part of the Open Networking
Foundation (ONF) and is focuses on the development of a
microwave information model that would abstract the char-
acteristics of any wireless transport device. Several Proofs of
Concept (PoCs) were conducted by the group ([11], [12] and
[13]), where the model was tested and several use-cases that
prove the utility of the model were implemented successfully.
This led to the emergence of the first version of the Microwave
Information Model, which is a technical recommendation by
ONF, called TR-532 [10]. The main author contributed to both
the TR-532 and the PoCs.

The main contribution of the paper is the design of a
Wireless Transport Emulator (WTE). WTE uses different
technologies in order to simulate a wireless transport network,
consisting of emulated Network Elements, that implement a
Microwave Information Model, TR-532. This tool is extremely
useful for SDN application developers that want to create
applications using the aforementioned information model,
because it eliminates their need of owning real, expensive,
wireless transport devices in order to test the functionality that
they are developing.

This paper is organized as follows: section II makes an
overview of some tools that relate to WTE, but are used in
other types of networks, section III defines the architecture of
the emulator, section IV provides high level details about the
implementation and the technologies used and, finally, section
V concludes the paper.

II. RELATED WORK

Development and testing of network applications or proto-
cols can be done using different approaches. The first one, but



also the most expensive, is to use an experimental testbed. This
consists of a small network consisting of real equipment to be
used for the testing purposes. Several testbeds exist: Emulab
[2], 100G SDN Testbed, provided by EsNet, as pointed out in
[3] and [6], GENI [4], etc. As stated earlier, the main drawback
of this approach is that building such a network is expensive.

The second approach for testing network applications and
protocols is network simulation. This approach is usually
simple and easy to use and can be used on a laptop or personal
computer. It is flexible and scalable, the operations of real
devices and interaction between them being modeled and run
in a software program. The main drawback in this case is
the fidelity and the replicability of the results in the same
simulation conditions.

The third approach is the network emulation. It differs
from the simulation approach through the real network ap-
plications or real-time operating systems that are used inside
the emulation environment. As opposed to simulations, where
the experiments are either faster or slower than real-time,
emulations are executed in real-time.

Not many network simulation or emulation tools exist in the
context of SDN. The most notorious and widely used software-
defined network emulator is Mininet [5], [7]. It has the ability
to emulate hosts, OpenFlow switches and links between them.
It is also able to use its own SDN controller or to connect to
a remote one. It is easy to use and has a Python API that be
utilized in order to customize a network. Its main focus is the
OpenFlow protocol and it does not support other southbound
protocols (e.g. NETCONF).

Another network simulator that can be used in the context
of SDN is ns-3 [8]. It provides support only for the OpenFlow
southbound protocol, but, as stated in [9], it is limited to an old
OpenFlow version and not developed anymore, because of the
need to implement an SDN controller inside the environment,
instead of being able to work with an external one.

Another available tool for software-defined networks em-
ulation is EstiNet [9]. It is also based, as the previous two,
on OpenFlow as the single supported southbound protocol.
It is mainly used for SDN application performance testing,
through its ability to provide such performance results in a
correct, accurate and repeatable manner.

All of the above tools, though, provide only OpenFlow as
a southbound interface. No tools that emulate networks in the
context of SDN and provide a NETCONF southbound inter-
face exist yet. This is probably because SDN is not a mature
field yet and the standardization process is still ongoing. Only
recently, YANG information models that represent network
devices have emerged. For example, the YANG model used
in the Wireless Transport Network Emulator was just released
end of December, by the Wireless Transport Group, as TR-
532. This is the main pillar of the WTE, as it allows SDN
application development based on TR-532, without the need
of owning real and expensive wireless transport equipment.

III. ARCHITECTURE

The Wireless Transport Emulator is designed to run on a sin-
gle Linux host and emulate there a specific topology described
in a file, in a JSON format, which is given as a parameter when
starting the WTE. Its architecture contains several components
that rely on different tools. Each Network Element (NE) is
simulated as a NETCONF server, which exposes the TR-532
information model, representing a wireless transport device.

The NETCONF server implementation is based on the
OpenYuma framework and it has its roots in a tool that was
used in the Proofs of Concept that were conducted by the
Wireless Transport Group, called the Default Values Mediator
(DVM), which is described in [14]. To achieve isolation for
each of the simulated device, the NETCONF server is ran
inside a docker container. It includes an Ubuntu Lunix image
and the OpenYuma application that represents the server.

Each NE has a management interface on which the NET-
CONF server listens, and, for making this possible, each
docker container is ran inside a docker network. This solu-
tion provides a full network isolation between the simulated
devices and makes the docker containers available from the
inside or from outside the host only through their management
interface.

Another tool used by the WTE is Open vSwitch (OVS).
For emulating a microwave link between two NEs, an OVS
bridge is created in the host Linux machine and inside each
container a Linux interface is created and attached to that
bridge. This ensures a layer 2 connectivity between the two
docker containers, with the help of the bridge.

Everything is glued together through a Python framework,
which parses the configuration files needed (a topology JSON
file and a configuration JSON file, which will be detailed
later) and manages the instantiation of the docker networks and
docker containers needed by the WTE. A high level overview
of the architecture, detailed for a simple line network topology
containing three network elements, is presented in Figure ??.

The Python framework that is responsible for the imple-
mentation of the infrastructure needed by the emulator is
very flexible and modular. It is implemented in an object
oriented way, having classes for each of the important aspects
that are needed: the emulator framework, network elements,
interfaces, links, topology etc. This offers the possibility of
extending it, for example, with a different NETCONF server
implementation, by creating a NE from a different docker
container.

The WTE also offers the possibility for each created NE to
register itself automatically to an OpenDaylight (ODL) SDN
Controller. This is an ODL specific implementation and it is
done by issuing an HTTP POST request with specific param-
eters. Because it is implemented as a separate module, it can
be easily extended to accommodate other controllers as well.
The details about the SDN controller, like IP address, port
and authentication details are part of the configuration JSON
file. The controlled can reside on a remote machine, the only
important thing to note here is that the host Linux machine



Fig. 1. High-level architecture of the WTE.

and also the docker containers need to have connectivity to
that machine, meaning that they must be part of the same
layer 3 network. More details about this connectivity will be
given in the next section.

IV. IMPLEMENTATION

The implementation of the WTE is a combination of C and
Python code and can be divided into several parts that together
offer the functionality previously described: the Python frame-
work that glues everything together, the NETCONF server
implementation that advertises the TR-532 information model,
which is actually a docker image used to represent an NE and
the link representations based on OVS bridges. These will be
detailed in the next subsections. The code is open-source and
can be found in the GitHub [17].

A. NETCONF Server

The NETCONF server used in the current version of the
WTE is a C implementation based on the OpenYuma frame-
work. This framework was chosen for its advantages over other
open-source frameworks, as described in [15]. The starting
point for the development of this server is represented by the
YANG files of the ONF TR-532, which contain the informa-
tion model that describes a wireless transport device. Besides
that, the microwave model refers also to the Core Information
Model, ONF TR-512 ([16]), which is also supported, in part,
by the server.

Using a tool provided by the OpenYuma framework, C code
is automatically generated from the YANG files. This code
generator has been altered in order to fulfill our needs. In its
base implementation, it generates stub callbacks for each of
the attributes defined in the YANG model, and then the user
needs to implement these callbacks in order to get the desired
functionality. In our case, we modified the code generator so
that it automatically fills the stub callbacks with a generic
function that is used to read the values of the attributes from
an XML file. The format of the XML file is based on the tree
representation of the YANG model and it only contains the
status attributes (read-only). This approach provides flexibility

in the sense that the status information provided by the
NETCONF server is easily customizable, without the need of
altering the C implementation and eliminating the need of code
recompilation. By modifying the XML file provided to each
server implementation, one can conveniently provide different
status information for different simulated network elements.

The approach is somewhat similar also in the case of config-
uration attributes. We use the startup datastore capability of a
NETCONF server and provide an XML startup configuration
file when the server is started, so that it will contain details
about the rad-write attributes that are present in the core
and microwave models. This file is also customized for each
simulated NE, such that every server instance will have its
own Network Element Universally unique identifier (UUID),
number of air-interfaces and their details or any other needed
parameter. The values for these attributes are provided by the
user in the JSON topology file needed by the emulator when
it starts. As stated before, this approach offers resilience to the
emulator.

Another important feature of the C implementation of the
server is the ability to generate NETCONF notifications. This
represents a big advantage, because the SDN application de-
velopers can develop and test applications that receive alarms
from the simulated devices and they can also be informed by
the NEs when a configuration attribute is changed. There are
two approaches used for notification generation. The first one
is, again, altering the C code generator so that in the callbacks
generated for configuration attributes, a function that triggers a
NETCONF notification is added. Every time the value for such
an attribute is changed, this callback function is invoked and,
from it, the call to the notification generation is done, using
the current timestamp of the system, the name of the attribute
that is being changed and its new value. This helps every SDN
application that is subscribed to NETCONF notifications to
be informed about configuration changes. The other approach
used for NETCONF notifications is randomly triggering a
problem notification. In the microwave information model,
each air-interface has a supported-alarms attribute, which
contains comma separated values of alarm names that are



supported by that interface of the device. The model also
defines a minimum number of six alarms to be defined. In the
WTE, the liberty of defining alarm names for those interfaces
is given to the user, through the topology JSON file. The server
implementation has the ability to randomly generate a problem
notification, containing the alarm name from the user defined
values, the current timestamp of the system and the severity of
the alarm. The server stores internally an array of those alarms,
so if an alarm was already raised previously, the server will
not send it the second time, but will clear it. The time period
between two consecutive NETCONF notifications, in this case,
is provided by the user, through the JSON configuration file
that the emulator takes as a parameter when starting. If that
period is zero, the server will not send problem notifications.

A few other tweaks were implemented in the NETCONF
server. For example, since an air-interface present in the
microwave model is represented as a Linux interface in the
docker container where the server runs, the status parameter
link-is-up, which is true in case the communication is es-
tablished with the remote side is read directly from Linux,
using the ip tool. Also, the configuration parameter power-is-
on directly alters the interface configuration (up or down) of
the corresponding Linux interface.

Everything is packed inside a docker image. This docker
image runs in every docker container that represents a network
element and provides isolation (e.g. in terms of the XML
configuration files used by the server) from other simulated
devices. The docker container associates a port from the host
Linux machine to a port inside the container (e.g. port 8300
from the host is associated with port 830 - standard NETCONF
port - from inside the docker image, and port 2200 from the
host is associated with port 22 - standard SSH port, needed
for connecting to the NETCONF server). The SDN controller
can then use these host ports and the management IP address
of the NE for its NETCONF connectivity.

B. Links using Open vSwitch

For being able to emulate a complete wireless transport
network topology, thus being able to pass traffic between
the docker containers, links between such containers are also
modeled. The information about the connectivity between
network elements is provided by the user through the topology
JSON file. A connection is represented by a JSON object
containing the two connection points of a link. The connection
point is defined by the NE UUID and the air-interface UUID.
Having only the air-interface UUID would have sufficed,
since this ID is by definition unique, but this is not enforced
anywhere in the emulator framework, so it was chosen to have
both attributes present in the topology JSON file for defining
one side of a microwave link.

For each link defined in the topology JSON file, an Open
vSwitch bridge, having a unique name, is created in the host
Linux machine. Afterwards, the ovs-docker utility is used for
both sides of the link. This is adding a connection between
the docker container and the OVS bridge. After both sides
of the link are added, the two docker containers have layer 2

connectivity through the OVS bridge. Optionally, an IP address
can be assigned to each of the interfaces from inside the docker
containers, and thus a layer 3 connectivity can be achieved
between the two emulated devices, but this is not needed.

C. Python framework

The WTE contains a framework implemented to put all
of the pieces together. This pieces are represented by the
docker containers that run the docker image of the NETCONF
server, which depict the wireless transport devices, and the
links between them, modeled by connections through an
OVS bridge. The framework has a similar approach as the
one used in mininet, containing several classes representing
objects in the emulation environment, such as: the emulation
environment object, the network element object, the interface
object, the link object etc. The workflow is depicted in a brief
sequence diagram in Figure 2.

The emulation environment object contains the details about
the configuration files needed by the WTE: the topology JSON
file (topology.json, which has a specific format and describes
the network elements with all their details (UUID, a list of
air-interfaces along with all their details - UUID, supported
alarms etc.) and the links between them. Several layers for
these interfaces exist in the Core Information Model, and they
can be represented in the JSON file and have a correspondence
in the WTE, but we will not detail all of them. We will
focus only on the MWPS (Microwave Physical Section), which
depicts a physical radio port of a network element. Every
information that is NE specific and is desired to be unique
for each device will be added here in the next releases. The
second file which is needed by the WTE is config.json, a
JSON file containing several configuration parameters of the
emulator, such as the details about the SDN controller, the
period notification timeout, the network address to be used
for the management IP addresses of the emulated devices and
a boolean that describes if the NEs should automatically try
to register to the SDN controller. Every attribute that is global
and needed by the emulation environment itself will be added
here in future releases. The next parameters needed by the
WTE are the pointers to the skeleton XML files needed by the
NETCONF server: the XML file containing the configuration
attributes defined in the YANG models, that will be altered
by the framework for each simulated device and then used
by the server as a startup datastore and the status XML file
which contains the values to be read by the server for the
read-only attributes. Also, the emulator is required to have the
YANG files of TR-532 and TR-512, so that they can be added
to the docker container in order for the NETCONF server to
advertise them. The emulator environment can also take a --
clean parameter. When this is given by the user, the emulator
only tries to clean the host Linux machine from any remaining
old junk objects (suck as docker containers, docker networks
or OVS bridges) that might have remained from a previous
emulator run.

The network element object depicts a simulated wireless
transport device. It is a class with many attributes and methods.



Fig. 2. Sequence diagram for starting the WTE.

One of the most important attributes of the NE is the manage-
ment IP address. As stated before, the user has the liberty of
specifying the network address of the devices. A management
IP factory exists, that slices the network address given by the
user into smaller /30 subnets. This is needed in order to ensure
the separation of docker networks. Each NE is part of a docker
network. A /30 netmask was chosen for the docker networks
because it wastes the smallest number of IP addresses from
the user specified network. The /30 netmask will provides two
host addresses: one will be part of the host Linux machine
and the other one will be part of the docker container itself.
Supposing that the user specified the management network
192.168.0.0/16, the first emulated NE will have the docker
network 192.168.0.0/30, with the IP 192.168.0.1 residing in
the host machine and the IP 192.168.0.2 being part of the
first docker container that is started inside that network.
The second emulated device will have the docker network
192.168.0.4/30, with the IP 192.168.0.5 in the host machine
and the IP 192.168.0.6 in its corresponding docker container.
This will ensure that the NETCONF servers are reachable
from the host machine via the IP addresses 192.168.0.1 and
respectively 192.168.0.5. From an SDN controller point of
view, it will see two different NEs, one accessible via NET-
CONF at 192.168.0.1:8300 and the other at 192.168.0.5:8300,
but the docker containers will not have connectivity on the
management interface, as desired. The important thing to note
here is that the SDN controller must have connectivity to any
of the management IP addresses of the devices, meaning it

Fig. 3. Example management IP address allocation for two emulated NEs.

needs to be part of the 192.168.0.0/16 network, or even part
of a supernet of that network address, so that its IP address will
not conflict with any of the devices management IP addresses,
given any number of NEs to be simulated. A simple figure
depicting two devices along with their associated IP addresses
can be seen in Figure 3.

The network element object is also responsible for altering
the skeleton XML files used by the NETCONF server, with
its specific values that are defined in the topology JSON file.
It actually parses those XML files and finds the relevant nodes
there, modifying their value with whatever it needs. It is also
in charge of creating the list of interfaces it finds in the
topology JSON file associated with its UUID. After that, it
creates its docker container based on the common image that
was built prior to starting the emulation, then it copies the



XML and the YANG files needed by the NETCONF server
and it starts the docker container. When the container is started,
the NETCONF server boots and waits for connection on its
specific port.

The interface object is responsible for maintaining the
details about its parameters. For example, as stated previously,
it contains a supported-alarms attribute, which needs to have
a minimum of six alarms defined, as enforced by the YANG
model. It has a reference to its parent network element and
uses it to alter the XML configuration and status files, which
are part of the NE object. Altering means that the interface is
responsible for adding a new XML node containing the details
about that specific interface in the XML files. This object does
not do any modifications inside the docker container itself, it
only changes the XML files. The NE object is responsible
for making the necessary configuration inside the docker
container, after it starts it, based on its interface list.

After the docker containers representing the network ele-
ments are started, the emulator environment goes to the next
step, which is the topology creation. It creates a topology
object which is responsible for parsing the links object from
the topology JSON file. This approach was chosen because
in the topology can be multiple layers as well: the MWPS,
which represents the connections between air-interfaces and
another layer, ETH, which can represent connections between
two Ethernet ports from the simulated NEs. We will not detail
the ETH layer here, but relies on the same principles as the
MWPS. For each link found in the topology JSON file, the
topology object will create a link object, which is responsible
for maintaining the details about the link. It verifies that
the link connection points are valid and the corresponding
interface objects are already created. If this is valid, then it
proceeds to the actual emulation of the link: it creates an OVS
bridge for that specific link and it connects the two interfaces
into that bridge, ensuring layer 2 connectivity between the two
docker containers.

V. CONCLUSION

SDN is a paradigm that is gaining momentum in the
networking industry, driven by organizations that focus on ac-
celerating its adoption through development of open standards
and encourage open-source software platforms. The remote
programming of the forwarding plane is encouraged through
protocols like OpenFlow and NETCONF, having well defined
interfaces and information models that abstract the underlying
network.

Having the right tools to test the developed information
models or the SDN applications that are based on those
models is a key enabler for maintaining the momentum and
accelerate the adoption of SDN in the industry. Mininet is
an important tool for emulating networks that support the
OpenFlow protocol, but the industry was lacking an emulator
that would support also the NETCONF protocol. WTE tries
to close that gap by proposing an emulating framework that
exposes a NETCONF interface. It is focusing for the moment
on the wireless transport devices, implementing the YANG

models of ONF TR-532 and TR-512, but because of its
modularity and flexibility it can be extended to accommodate
any YANG information model or any other NETCONF server
implementations.

There are many aspects in which WTE may be improved.
For example, the links between two docker containers could
be modeled through Linux veth pairs, instead of creating an
OVS bridge between the containers. This will solve also an
issue that can arise in the current implementation: if one side
of the link is disabled (Linux interface is configured to down),
the other side would not be affected, since it is another port in
the OVS bridge. By using veth pairs, disabling one side of the
link would be automatically seen in the remote side as well.
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